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The advent of wireless personal communication services in recent years
has created a number of challenging research problems in the areas of com-
munications, signal processing and networking. A major challenge in dealing
with the wireless channel has to do with its inherent unreliability. This is
in contrast with wired networks in which the physical loss is very small, e.g.
of the order of 10~°.

It is generally argued upon that in practice, wireless video applications
involve users moving at relatively slow speeds, rather than at tens of miles
per hour. A direct consequence of slow moving users is that the resulting
channels suffer from slow fading and shadowing effects. If the condition of
this slowly changing channel is estimated, it is conceivable to adapt/modify
the source coding, modulation, channel coding, power control, or any other
aspects of transmission scheme to the channel condition. In particular, it
is possible to vary the source and channel coding bit rates according to
the channel condition, in such a way as to minimize the distortion of the
received signals. Indeed, several researchers have applied this idea to speech
[1, 7] and image [6, 2] transmission over the wireless links. In addition to
adapting to channel conditions, one can protect different source bits using
unequal error protection (UEP) schemes such as Rate Compatible Punctured
Convolutional (RCPC) codes [5, 1, 2, 7, 6]. With the exception of [1] which
deals with speech, the remaining papers mentioned above explicitly require
the source coder to adapt to the channel condition. As an example, in
[8] a whole new codebook might have to be designed and used in order to
optimally match each new channel condition.

With the recent introduction of highly scalable video compression schemes
such as [3], it is possible to generate one compressed bit stream, such that
different subsets of it correspond to the compressed version of the same
video sequence at different rates. Thus, if one uses such a source coder in
the wireless scenario, there is no need to change the source coding algorithm,




or any of its parameters, as the channel conditions change. This is particu-
larly attractive in multicast situations in heterogeneous networks where the
wireless link is only a small part of a much larger network, and the source
rate cannot be easily adapted to the individual receiver at the wireless node.
Over the past year, we have developed a technique for optimum parti-
tioning of source and channel coding bits, for the scalable video compression
algorithm described in [3]. By “optimum”, we mean a partitioning which
results in minimum expected value of distortion, which we choose to be
Mean Squared Error (MSE). We will consider the case where the channel
state information (CSI) is known, and the joint source/channel codec will
adapt to the channel and optimally transmit video for the current channel
state. In section 1, we briefly describe our source coding algorithm, section 2
formulates our problem and outlines our basic approach, section 3 contains
details of our optimization based approach and section 4 includes results.

1 Scalable Source Coder

The source coder we use in this project is the scalable coder described in
[3]. This coder has been shown to generate rates anywhere from tens of
kilo bits to few mega bits per second with arbitrarily fine granularity. In
addition, its compression efficiency has been shown to be comparable to
standards such as MPEG-1 [3]. The fundamental idea behind it is to apply
three dimensional subband coding to the video sequence to obtain a set of
spatio temporal subbands. Subsequently, each subband coefficient is suc-
cessively refined via layered quantization techniques. Finally, conditional
arithmetic coding is applied to code different quantization layers. In doing
so, the spatial, temporal, and inter-subband correlations, as well as corre-
lation between quantization layers are taken into consideration to minimize
the bit rate. The problem of optimal source allocation between different
quantization layers of different subbands, in the absence of channel errors
has been discussed in [3]. In the next section, we outline our approach for
the case where channel errors are not zero.

2 Problem Formulation

The main problem we solve is: given a total number of bits C, and a given
binary symmetric channel with bit error probability P., find the best source
coding rate Rs and channel coding rate R, such that C = R, + R, and
the expected value of MSE is minimized. This is equivalent to finding the
optimal source to channel bit ratio R/R?, with R + R2 = C, such that
the distortion is minimized. To find these minima for various CSI’s, our
approach is to construct distortion curves D(Egjz) and to locate the minima
empirically.

In constructing the above curves for each specific value of 'c'!—ii@'-" we must
s




answer two questions: first, which quantization layers of which subband
should be included in R,? Second, to what extent should each one be
protected? If ny denotes the number of source bits in subband %k of the
source coder described in section 1, and m; x denotes the number of channel
bits used to protect source bit i of subband k, then our optimization problem
is that of minimizing the expected value of MSE given by [9]:

K
> E[MSE;] (1)

k=1
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subject to the constraints:
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In the above equations, MSFE} is the mean square error of subband k,
K is the total number of subbands, g(m; ) is the bit error probability if
m;  channel bits are used for protection of bit ¢ of subband k, and fi(7) is
the resulting MSE if an error occurs at bit 7 of subband k, or equivalently
the error sensitivity function.

To simplify the above problem, we can introduce a new variable m given
by:

Z m,',k = my (4)
i=1

to replace the variables m; ;. The MSE of subband & can now be represented
as a function of 2 variables n; and my:

K
E[MSE] =Y E[MSEx(n, ms)] (5)
k=1

However, there is now an additional problem of optimally distributing my
channel bits among nj source bits, or the mapping from my to the set
{mir}. This is a discrete non-linear optimization problem which can be
solved via the well known branch and bound technique. To speed up this
optimization, we can impose the following pruning rules for the branch and
bound algorithm: first, all bits within the same quantization layer must
receive the same level of protection; second, higher quantization layers never
receive more protection than lower quantization layers.

In the next section, we focus on the problem of optimizing 5 subject to
the constraints in 3.




A o R, R,
0.0287 | 0.095 | 64.0 kbits/s | 67.3 kbits/s
0.0237 | 0.095 | 70.7 kbits/s | 67.9 kbits/s
0.0187 | 0.095 | 72.4 kbits/s | 67.9 kbits/s
0.0187 | 0.085 | 72.4 kbits/s | 68.4 kbits/s
0.0187 | 0.075 | 72.4 kbits/s | 69.3 kbits/s

Table 1: Source and Channel Rates for various A and p

3 OPTIMIZATION PROBLEM

Our solution to the optimization is based on a variation of Lagrange Mul-
tipliers, similar to the one developed in [4], with the exception that we are
considering optimization of two sets of variables instead of one. The general
theorem states the solution to the unconstrained optimization problem:

K K K
min{z AISEk(nk,mk)+,\an+p27nk} (6)

k=1 k=1 k=1

is also the solution to the constrained optimization problem described ear-
lier, provided there exists A and g such that the constraints in 3 are met
with equality. The questions left to solve this unconstrained problem are:
(a) for given A and g, how to find the optimal solution to 6; (b) how to find
A and g to meet the constraints stated in 3. We will answer those next.

3.1 Solving the unconstrained problem

We note that to solve 6 for given A and p, we can solve for each set of vari-
ables (ng, my) independently. In other words, we can solve K independent
minimization problems of the form:

min{MSEk(nk,mk)+/\nk+pmk} (7)

To solve each optimization problem, we exploit the fact that the number of

quantization layers for each subband takes on finitely many discrete values.
For instance, the source video that is coded to 250 kilo bits per second, can
have a maximum of 7 quantization layers in each subband. This implies that
for each subband, n; can take on one of 7 discrete values. Our approach to
solving the optimization problem in 7 is exhaustive search. Specifically, we
step through all values of ny and for each one, find the optimum my, using
the branch and bound technique discussed in section 3.

3.2 Finding the Lagrange Multipliers

Note that for each set of (A, p), we can find the corresponding values of
(ng,mk), and hence (R, R;) using the approach outlined in section 3.1.
As such, we can claim that R, and R. are both functions of both A and
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p. To facilitate our goal of finding (A, ) that meet the constraints in 3
with equality, we make the simplifying assumption that R; ( R.) is only a
function of A ( g). To show numerically that this is a valid assumption,
we construct Table 1 for CSI of Pe = 0.05, using the approach described in
section 3.1. We see that as we vary p and keep A constant, R, stays relatively
constant while R. changes dramatically; the opposite is true when we keep
p constant and vary A. This shows R is more sensitive to changes in A than
in p, and the opposite is true for R., and our assumption is approximately
valid. Another important observation one can make from Table 1 is that in
general, the rate R, ( R.) is inversely proportional to A ( p). Putting these
together, we can propose the following search strategy:

1. Guess an initial value for A! and u!. Using these values, find corresponding
R! and R! using procedures discussed in 4.1.

2. If target R; is larger then R!, let A2 = aA!, where 0 < a < 1. Else A? =
(1/a)A! Similar procedure for p2.

3. Construct a linear function R,(1/A) of variable 1/ using previous two sets
of points, (A*~2, R{=2) and (A7, R{~1). Target R; by estimating A* using
this linear function. Similar procedure for p’.

4. If R is within €, of R? and R! is within ¢. of R, stop; Otherwise, goto 3.
3 £ [+ C g

Empirically, we found a = 0.1, ¢, = 0.05R}, and ¢, = 0.05R] results in 15
to 20 iterations. Since we terminate the search algorithm when it reaches an
approximate solution, a natural question is, “how far off is the answer from
the ideal solution?”. To answer this, we can apply the lemma in [4] and
show that for our experimental results described in section 4, our algorithm
terminates when it is within 5% M SE of the actual solution.

4 RESULTS

To test the above algorithm numerically, we combine the 3D scalable video
codec and Rate-Compatible Punctured Convolutional Codes [5] to build our
proposed joint source/channel codec. For source coding, we use 3 levels of
spatial and 2 levels of temporal subband decomposition. We use 200 frames
of the digitized video “raiders of the lost ark” to compute the distortion
functions, and apply our bit allocation strategy to search for the optimal
source to channel coding ratio R%/R? for various CSI ranging from 0.001
to 0.05. The total bit budget is 250kbits/s. We see in Figure 1 that there
exists a unique distortion minimum for various P,.

We observe that as the error probability P, increases, the total number of
quantization layers selected decreases; this is due to the decrease of optimal
source to channel ratio as the channel condition worsens. From P, = 0 to
P, = 0.001, the layers that are dropped are mostly high frequency layers;
this is due to the low error sensitivities of high frequency components. In




Distortion vs. Source to Channel Ratio (250kbits/s)
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Figure 1: MSE vs. R,/R, for various CSI

poor channel condition, P, > 0.01, the number of layers of low frequency
subbands is reduced, resulting in a more uniform distribution of quantization
layers among the subbands. This is because higher quantization layers are
useless unless all the preceding lower layers are received error-free. Therefore
a subband with too many quantization layers will render the higher layers
frequently futile in poor channel condition.

Although we assume the knowledge of the channel, there are times when
the estimate of the channel is incorrect. Using Figure 1, we can easily de-
termine the performance degradations in such situations. For example, to
find the approximate performance of the joint source/channel codec assum-
ing P, = 0.01 but operating at P, = 0.05, we locate the point R2/R? for
P, = 0.01 on the curve Dgos5(Rs/R.)-

If CSI is given in the form of a probability distribution function, then
our proposed approach can be used to find the optimum operating point:

} (8)

where ' is the set of all possible CSI’s. In this situation, our joint
source/channel coding approach has better adaptation potential to the chan-
nel than previous schemes [2].

To show that our optimization strategy is essential in poor channel con-
dition, P. = 0.05, we compare its performance with other codecs in Figure
2. Curve a in Figure 2, shows the PSNR of the scalable codec under ideal
noiseless conditions for 100 frames. The average PSNR in this case is 31.8
dB. Curve b in Figure 2 shows the PSNR of our proposed optimized codec
operating at the optimal R;/R. = 0.6, with unequal error protection as de-
scribed in earlier sections. The average PSNR in this case is about 4 dB
lower than the ideal noiseless case. Curve ¢ in Figure 2 shows the perfor-

RC/R® = arg {R:"/"kc [Z Dp (R, /Re)P(CSI = P.i)

P.tel’
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Figure 2: PSNR vs Frames for different Codecs: a) noiseless channel; b)
proposed codec with unequal error protection R2/R2 = 0.6, P, = .05; c)
equal error codec R%/R2 = 0.6, P. = .05; d) equal error codec R,/R. = 2,
P.=.05

mance of a codec operating at the optimal R;/R. = 0.6, but using equal
error protection. This codec distributes R, source bits using traditional bit
allocation theory that assumes a noiseless channel, then channel codes these
source bits with R, channel bits equally. As seen, the PSNR is about the
same as case b for most frames, except for occasional drops of 25 dB. These
drops are a direct consequence of the fact that important source bits not
being adequately protected and can result in objectionable degradations to
the quality of the video. Finally curve d in Figure 2 shows the performance
of the same equal error protection codec as in ¢ but operating at non-optimal
Rs/R. = 2. As seen, the average PSNR of this codec is about 8 dB. The
main conclusion to be drawn from Figure 2 is that optimal source/channel

bit distribution does make a significant difference in both visual quality and
PSNR.
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